
Six Sigma and Software
Engineering & Reliability
written by Manoj Khanna | April 17, 2003
I recently finished reading the book “What is six-sigma?” by
Peter Pande, and Larry Holpp. In terms of Software
Engineering, Six Sigma is much more than a specific analysis
of software reliability. It is a quality improvement framework
and mindset focused on the measurement of process variation as
the culprit for lack of quality. I want to point out that the
term “six sigma” when used in conjunction with software
reliability, has little or nothing to do with statistics, with
distributions, with their moments, etc. It is a buzzword and
will remain a buzzword until such a time as it is defined in
statistically correct ways.

The real Sense for Six Sigma

Six Sigma as the name implies stands for six standard
deviations from the mean. Sigma is a statistical measure of
variability around the average. The concept of Six Sigma comes
from reliability engineering prediction of system or component
failure probabilities. For example: the wearout time of a
component may be normally distributed – that is mean –
standard deviation. So, we want a component having a very
small of failure before its design life. If we set this at one
sigma from the mean we get ~80% reliability, 2 sigmas gives us
~95%, 3 sigmas ~99%, and so on. Six Sigma gives us ~99.9997%
relaibility – near perfect. Or in other ways 3.4 defects per
million.

Six Sigma and Software Reiability

https://manojkhanna.com/2003/04/17/six-sigma-and-software-engineering-reliability/
https://manojkhanna.com/2003/04/17/six-sigma-and-software-engineering-reliability/
http://www.amazon.com/exec/obidos/ASIN/0071381856/qid=1050620872/sr=2-1/ref=sr_2_1/102-0297340-0230509

In terms of software engineering, however, it is not so quite
clear cut as compared to mechanical or electronic components.
Also in case of software reliability, we don’t have very good
predictive models, failure models, etc. As somebody suggested
that one approach to this could be to predict faults remaining
as a function of faults found in earlier phases. In general
terms for software reliability Six Sigma would mean that the
software process will find ~99.9997% of all the faults before
the software is put into service.

What do we need to do?

We need to adjust the design life accordingly. In common
terms, the design life of shrink wrapped software is ten
seconds before we open the package, and for the custom
software ten seconds after the check clears.

In the language of Motorola official release:

“Motorola wants to be free of errors and defects 99.9997% of
the time in all that it does. That means no more than 3.4
defects per million units.”

– ‘Electronic Business’, October 16, 1989

Use of Statistical Tools to Improve Software Quality and some
points to remember regarding this:

Today, the complexity and size of software has grown
substantially, along

with the size and complexity of the silicon processors,
perhaps exceeding

Moore’s Law (a doubling of processing power every 18
months).

The business risk of developing very large software
systems has spurred

the development of a very large shrink wrapped software

industry, primarily

because of the failure of many very large complex
systems.

Software factories, of which the primary case would be
Microsoft, flourish

by delivering very large, internally complex products,
at prices consumers

can afford to bear, exclusively by delivering extremely
large volumes of like

products. The only technique that has proven effective
for quality assurance,

is using thousands of volunteer quality inspectors (beta
testers) to report

the errors prior to final relase of the product. Because
the cost of manufacturing

beta copies is so low, it is far out weighed by the
economic benefit the company

receives from this type of testing process.

Hence, can we ever assume that the software development
industry will ever

achieve on standardized uniform measure of software
quality, given that to

be relevant, the definition of a software standard must
be reached between

the consumer of that software and the producer of the
software ? I would conjecture,

probably no.

The reason for this is due to the nature of software. An
algorithm may

be provably correct, but may be implemented in an
inefficient manner. (A possible

defect). It might be physically damaged in the
duplication of a disk (a manufacturing

problem), which might manifest itself by the consumer
being unable to intsall

and use the product.The root cause of the problem, may
remain the inefficent

implementation of the algorithm, but it manifests itself
in so many potential

ways, it will be in all likelyhood, impossible for the
consumer to identify

the defect. Unless a defect can be quantitatively
measured it will be impossible

to detect.

At the very core of the problem, the inefficient
algorithm might be the

work of one designer or developer, being unaware that
more efficient mechanisms

might exist, or it may be result of a specification
error, or perhaps the

algorithm subroutine was purchased from an outside
supplier, who provided

poor instructions regarding it’s limitations.

Statistical tools can be used to analyze overall system
quality, such as

a transaction failure. These tools are severly limited
in the applicability

to a individual software developer, because the
development task is typically

to design and write single software modules, as opposed
to large scale software

reuse.

We keep learning more and developing new insights, so
things will change,

most probably through the use of better software
partitioning and packaging

technology.

Conclusion

In the end, the people at large, the **users** does not
understand why a concept that is worthy and meaningful in the
hardware and manufacturing domain ***does not*** apply to
software. Consequently, the **users** might be mislead and
ill-served because they are led to believe that “six sigma”

software is somehow comparable to “six sigma” hardware. Is
it?? Does it??

[I am convinced that others who have read the authoritative
literature on six sigma and have attended appropriate training
could talk more intelligently about this technology.]

© Manoj Khanna/Open Source World/rapidblog.com 2003, 2004,
2005, 2006, 2007, 2008, 2009
Powered by Dextrus Prosoft, Inc.

http://www.dextrusprosoft.com

