
Six Sigma and Software
Engineering and Reliability
written by Manoj Khanna | April 18, 2003
I recently finished reading the book “What is six-sigma?” by
Peter Pande, and Larry Holpp. In terms of Software
Engineering, Six Sigma is much more than a specific analysis
of software reliability. It is a quality improvement
framework, and mindset focused on the measurement of process
variation as the culprit for lack of quality. I want to point
out that the term “six sigma” when used in conjunction with
software reliability, has little or nothing to do with
statistics, with distributions, with their moments, etc. It is
a buzzword and will remain a buzzword until such a time as it
is defined in statistically correct ways.

The real Sense for Six Sigma  

Six Sigma as the name implies stands for six standard
deviations from the mean. Sigma is a statistical measure of
variability around the average. The concept of Six Sigma comes
from reliability engineering prediction of system or component
failure probabilities. For example, the wear out time of a
component may be normally distributed – that is meant –
standard deviation. So, we want a component having a very
small of failure before its design life. If, we set this at
one sigma from the mean, we get ~80% reliability, and 2 sigmas
gives us ~95%, and 3 sigmas ~99%, and so on. Six Sigma gives
us ~99.9997% reliability – near perfect; or, in other ways 3.4
defects per million.

Six Sigma and Software Reliability.

  In terms of software engineering, however, it is not so
quite clear cut as compared to mechanical or electronic
components. Also in case of software reliability, we don’t
have very good predictive models, failure models, etc. As

https://manojkhanna.com/2003/04/18/six-sigma-and-software-engineering-reliability-2/
https://manojkhanna.com/2003/04/18/six-sigma-and-software-engineering-reliability-2/

somebody suggested, that one approach to this could be to
predict faults remaining as a function of faults found in
earlier phases. In general terms, for software reliability,
Six Sigma would mean that the software process will find
~99.9997% of all the faults before the software is put into
service.

What do we need to do?  

We need to adjust the design life accordingly. In common
terms, the design life of shrink wrapped software is ten
seconds before we open the package, and for the custom
software ten seconds after the check clears.

In the language of Motorola official release:

  ”Motorola wants to be free of errors and defects 99.9997%
of the time in all that it does. That means no more than 3.4
defects per million units.”  - ‘Electronic Business’, October
16, 1989

Statistical Tools – Improved Software Quality

Use of Statistical Tools to Improve Software Quality and some
points to remember regarding this:

Today, the complexity and size of software has grown
substantially, along  with the size and complexity of
the silicon processors, perhaps exceeding  Moore’s Law
(a doubling of processing power every 18 months).
The business risk of developing very large software
systems has spurred  the development of a very large
shrink wrapped software industry, primarily  because of
the failure of many very large complex systems.
Software factories, of which the primary case would be
Microsoft, flourish  by delivering very large,
internally complex products, at prices consumers  can
afford to bear, exclusively by delivering extremely

large volumes of like  products. The only technique that
has proven effective for quality assurance   is using
thousands of volunteer quality inspectors (beta testers)
to report  the errors prior to the final release of the
product. Because the cost of manufacturing   beta copies
is so low, it is far out weighed by the economic benefit
the company  receives from this type of testing process.
Hence, can we ever assume that the software development
industry will ever  achieve on standardized uniform
measure of software quality, given that to  be relevant,
the definition of a software standard must be reached
between  the consumer of the software are and the
producer of the software ? I would conjecture,  probably
no.
The reason for this is due to the nature of software. An
algorithm may  be provably correct but may be
implemented in an inefficient manner. (A possible  
defect). It might be physically damaged in the
duplication of a disk (a manufacturing   problem), which
might manifest itself by the consumer being unable to
install   and use the product. The cause of the problem,
may remain the inefficient   implementation of the
algorithm, but it manifests itself in so many
potential  ways, it will be in all likelihood,
impossible for the consumer to identify  the defect, and
unless a defect can be quantitatively measured it will
be impossible   to detect.
At the very core of the problem, the inefficient
algorithm might be the  work of one designer or
developer, being unaware that more efficient mechanisms
  might exist, or it may be the result of a
specification error, or perhaps the   algorithm
subroutine was purchased from an outside supplier, who
provided   poor instructions regarding it’s limitations.
Statistical tools can be used to analyze overall system
quality, such as   a transaction failure. These tools
are severely limited in the applicability   to an

individual software developer because the development
task is typically   to design and write single software
modules, as opposed to a large scale software   use.
We keep learning more and developing new insights, so
things will change,   most probably through the use of
better software partitioning and packaging   technology.

Conclusion 

In the end, the people at large, the **users** does not
understand why a concept that is worthy and meaningful in the
hardware and manufacturing domain ***does not*** apply to
software. Consequently, the **users** might be mislead and
ill-served because they are led to believe “six sigma”
software is somehow comparable to “six sigma” hardware. Is
it?? Does it??

[I am convinced that others who have read the authoritative
literature on six sigma and have attended the appropriate
training could talk more intelligently about this technology.]

© Manoj Khanna 2003 – 2013.

