
Role of Software Architect in
Agile Projects
written by Manoj Khanna | January 2, 2017

One of the biggest misconceptions about Agile is that
architecture is not required in the Agile development. ‘We‘re
Agile; we don’t need architecture’–is something that everybody
involved in Agile has heard at least once.

Let’s start by establishing a common understanding of what the
software architecture is, to which everyone can agree. The
definition of architecture is quite broad, and the roles and
responsibilities of software architects vary dramatically from
company to company.

Here is how Martin Fowler identifies architecture in Patterns
of Enterprise Application Architecture:

“Architecture” is a term that lots of people try to define,
with little agreement. There are two common elements: one is
the highest-level breakdown of a system into its parts; the
other–decisions that are hard to change.”

I find that we all can agree on those two common elements. Do
we need the highest-level system break down? Absolutely. Do we
need huge documents and long design stages? No. Agile is not
against the architecture–it’s against useless, bulky
documentation that nobody reads anyway.

https://manojkhanna.com/2017/01/02/role-of-software-architect-in-agile-projects/
https://manojkhanna.com/2017/01/02/role-of-software-architect-in-agile-projects/

From the perspective of change, the role of architecture in
Agile development becomes quite clear – A good architecture is
responsive and will support agility; a poor architecture will
resist it and reduce it. And, since one of the benefits of
adopting Agile is a better response to changes in the
requirements, it’s obvious that flexible and extendable
architecture is a key to this.

The biggest issue that I’ve noticed is the very thin line
between architectural design and software design. I’ve seen
companies where the different implementations of the following
practice were used: Architects created design documentation
and developers were responsible for writing the code. This
introduced a myriad of problems, starting with developers
feeling that they were not fully trusted. This also gave
developers an excuse not to really think about the design.
‘We’re just coders, not responsible for the design and we do
only what we are told to do.’ is a common attitude that I have
witnessed. In Agile, the developer is responsible for the code
he writes (and unit tests) as well as the design since nobody
else will provide him with it.

Ideally, the high-level software architecture is completed
before coding starts. And I really have to be careful here –
completed doesn’t mean written in stone; it can change, but
with an understanding “this is the best of what we know right
now.” This doesn’t necessarily include a database design or
class diagram, and the level of details really depends on the
approach you will be taking moving forward. I found that for
certain systems the Domain Drive Design (DDD) is extremely
useful and has made my life far easier. Therefore, I like to
have a domain model and a basic set of domain classes and
their relations defined, but not to the level of methods and
attributes.

Personally, I prefer projects to have a design stage; this is
when the high-level business domain model and user stories are
created. At this stage the main architectural decisions are

made – the technology that will be used, the database server,
the application type (for example, Mobile, rich client, or
service), the architecture style (client server, layered
architecture, SOA) is selected, and the architectural frame
that will be applied is selected as well. The document created
during this phase is not solely architectural effort, it is a
collaborative effort of business analysts, developers, and
network administrators. The output of this design stage is not
only a high-level architectural document. (This is not an
attempt to make fixed predictions of the future or create a
detailed software design upfront as this approach places all
the significant decisions at the point of least knowledge in a
project’s lifecycle). This is simply a way of getting and
sharing the common understanding of the system we are all
about to develop.

This is an excerpt from the forthcoming book, The Art of Being
Agile.

[Image Courtesy: Flickr/Helix/Philip Gunkel]

http://goo.gl/u6JyaN

