
Role of Software Architect in
Agile Projects
written by Manoj Khanna | January 2, 2017

One of the biggest misconceptions about Agile is that
architecture is not required in the Agile development. ‘We‘re
Agile; we don’t need architecture’–is something that everybody
involved in Agile has heard at least once.

Let’s start by establishing a common understanding of what the
software architecture is, to which everyone can agree. The
definition of architecture is quite broad, and the roles and
responsibilities of software architects vary dramatically from
company to company.

Here is how Martin Fowler identifies architecture in Patterns
of Enterprise Application Architecture:

“Architecture” is a term that lots of people try to define,
with little agreement. There are two common elements: one is
the highest-level breakdown of a system into its parts; the
other–decisions that are hard to change.”

I find that we all can agree on those two common elements. Do
we need the highest-level system break down? Absolutely. Do we
need huge documents and long design stages? No. Agile is not
against the architecture–it’s against useless, bulky
documentation that nobody reads anyway.

https://manojkhanna.com/2017/01/02/role-of-software-architect-in-agile-projects/
https://manojkhanna.com/2017/01/02/role-of-software-architect-in-agile-projects/

From the perspective of change, the role of architecture in
Agile development becomes quite clear – A good architecture is
responsive and will support agility; a poor architecture will
resist it and reduce it. And, since one of the benefits of
adopting Agile is a better response to changes in the
requirements, it’s obvious that flexible and extendable
architecture is a key to this.

The biggest issue that I’ve noticed is the very thin line
between architectural design and software design. I’ve seen
companies where the different implementations of the following
practice were used: Architects created design documentation
and developers were responsible for writing the code. This
introduced a myriad of problems, starting with developers
feeling that they were not fully trusted. This also gave
developers an excuse not to really think about the design.
‘We’re just coders, not responsible for the design and we do
only what we are told to do.’ is a common attitude that I have
witnessed. In Agile, the developer is responsible for the code
he writes (and unit tests) as well as the design since nobody
else will provide him with it.

Ideally, the high-level software architecture is completed
before coding starts. And I really have to be careful here –
completed doesn’t mean written in stone; it can change, but
with an understanding “this is the best of what we know right
now.” This doesn’t necessarily include a database design or
class diagram, and the level of details really depends on the
approach you will be taking moving forward. I found that for
certain systems the Domain Drive Design (DDD) is extremely
useful and has made my life far easier. Therefore, I like to
have a domain model and a basic set of domain classes and
their relations defined, but not to the level of methods and
attributes.

Personally, I prefer projects to have a design stage; this is
when the high-level business domain model and user stories are
created. At this stage the main architectural decisions are

made – the technology that will be used, the database server,
the application type (for example, Mobile, rich client, or
service), the architecture style (client server, layered
architecture, SOA) is selected, and the architectural frame
that will be applied is selected as well. The document created
during this phase is not solely architectural effort, it is a
collaborative effort of business analysts, developers, and
network administrators. The output of this design stage is not
only a high-level architectural document. (This is not an
attempt to make fixed predictions of the future or create a
detailed software design upfront as this approach places all
the significant decisions at the point of least knowledge in a
project’s lifecycle). This is simply a way of getting and
sharing the common understanding of the system we are all
about to develop.

This is an excerpt from the forthcoming book, The Art of Being
Agile.

[Image Courtesy: Flickr/Helix/Philip Gunkel]

Rise of the Chatbots!
written by Manoj Khanna | January 2, 2017

In light of building a contemporary digital experience and
social engagement, the rise of the Chatbots is quite an advent

http://goo.gl/u6JyaN
https://manojkhanna.com/2016/09/02/rise-of-the-chatbots/

when combined with the latest tools & technologies. We have
clearly seen a growth in digital concierge services from Apple
(Siri), Google (GoogleNow), and Amazon (Echo) in past coupled
of years if not more – the use of common language and
communication with digital devices is increasingly becoming a
standard. As Dion Hinchcliffe explicitly references, IRC Bots,
Eliza, & Zork – the latter, command line programs from 80’s,
and the former Internet Relay Chat (IRC) that used to perform
automated functions to control the IRC Channels back in the
day when I was in high school working on dial-ups.
Today, the world is different, and the Chatbots are a self-
learning and evolving machine – they are the new frontier for
brand & consumer interaction. Uber’s Messina describes it as
‘Conversational Commerce’, and Facebook’s Zuckerburg describes
as the ‘next big thing’ that is being worked on now at
Facebook, and they’ve built a Chatbot roadmap of sorts.

How do Chatbots work?
Chatbots work differently, and they have a human-built
intellect that is fed over a course of time and developed
using data which is curated based on an archival process of
scenarios and cases. The knowledge experience part comes from
the business logic and machine learning, and the constant
communication of the connected devices (apps, devices, APIs,
DBs) which are feeding into the business logic. So your
Chatbot essentially becomes a self-learning machine which
should get better and better over time. The information
feeders to Chatbot are multi-channel user interfaces – so any
data that is visible to us eventually gets fed into its
knowledge portal. The accumulated data gets further curated
through machine learning and is then queried on through
algorithms which utilize the power of cloud computing.

So what’s in it for companies?
For Social Media companies – it’s about connecting users with
their brands, and for brands, it’s about their products, brand
loyalty, and customer service. And this all leads to the
monies. Companies, or in this case the guinea-pig pioneers
within social media and brands that are looking at Chatbots as

a way to monetize into the building hype of ‘conversational
commerce’, and also, as a way forward to potentially change
they interact with customers today.

So how should one get started on Chatbot?
Follow a minimalistic approach – solve a simple problem and
then bring complexity. The power of natural language – where
users can query simple things – such as service type, any
recommendation or what next product to choose from – could be
a simple but good start. Worth for brands which are user
conscious.
[image courtesy: tabletop assistant / MattHurst via Flickr CC
Licence By]

Puppetized!
written by Manoj Khanna | January 2, 2017

https://manojkhanna.com/2016/07/12/puppetized/

Dockerized!
written by Manoj Khanna | January 2, 2017

https://manojkhanna.com/2016/07/02/dockerized/

Understanding the feedback in
‘The Feedback Loop’
written by Manoj Khanna | January 2, 2017

What is Feedback?
Feedback occurs when the return of information concerning the
results of a process or activity takes place
(http://www.thefreedictionary.com.). This event is part of a
chain of cause-and-effect that forms a loop onto itself.
Feedback comes in two forms: good feedback and bad feedback.
Without feedback, the Agile process of inspection and adaption

https://manojkhanna.com/2016/04/15/understanding-the-feedback-in-the-feedback-loop/
https://manojkhanna.com/2016/04/15/understanding-the-feedback-in-the-feedback-loop/

could not occur. An Agile process thrives in an environment
with constant change. Because of this variability, adaptation
and adjustment points are made on a regular basis. If we can
shorten the amount of time elapsed between these calibration
points, then we can more quickly adapt to these changing
realities. In short, this is the feedback loop in our process
and environment.

Types of Feedback
There are, however, different forms of feedback, which are
listed here for the reader’s reference and throughout:

Communication feedback (e.g., onsite customer, open team1.
workspace, ubiquitous language)
Technology feedback (tools we use to give us quick2.
feedback, like Cruise Control, mocking,
BigVisibleCruise, CCtray, Resharper, TFS real time
compilation/warnings, and confirming that we use the
right technology)
Requirement feedback (when a customer need realizes in a3.
demo or the production environment)
Market feedback (to see how the market reacts to a new4.
story/feature/module, frequent and numerous deployments)
Analysis, design and coding feedback (e.g., pair5.
programming, whiteboard mockups, code reviews)
Defect and testing feedback (the quicker we find out6.
about bugs, the quicker we can fix them, deploying often
and always, test driven development)
Operational feedback (process, methodologies, practices7.
and how to improve them)

The quicker we can get these forms of feedback from the
source, the faster we can validate our progress and adapt to
the information received.

A company’s ability to deal with change and adapt accordingly
to changing conditions will improve its competitiveness in

the marketplace. Companies that struggle with a slow feedback
loop will find themselves caught up in trying to solve
problems that have already changed or are not important
anymore.

Effects of a fast feedback loop
Having a fast feedback loop allows dominance of a company
during market changes. For example, one of our clients using
our health and safety management system had a deadline for
submission of reports. Approximately 800 companies assigned to
each performed various tasks and submitted reports showing the
work completed. There were some features and latency problems
that the client wanted to be fixed, and the deadline was one
week away. We were able to get quickly the high-priority
features added, and latency issues resolved three days into
the week using our engineering practices, automated testing,
and automated deployments. We went live before the deadline to
get much-needed feedback on our changes in a real production
environment. If we had waited until after the deadline, we
wouldn’t have obtained the actual feedback from the end users
re the added features, nor the feedback from an environment
production perspective, since the client wouldn’t be using the
system until the next deadline, which was months away. Using
this feedback from deployed features in a production
environment allowed us to make more improvements so that the
next period time would go even more smoothly.

Summary
Being able to perform a full cycle of development from client
request to production deployment in a few days helps ensure
the company can quickly adapt to changing market conditions.

(This is an excerpt from the mini book series “Agile from the
Trenches: The Feedback Loop”)

The Significance of Product
Backlog Refinement in Scrum
Success
written by Manoj Khanna | January 2, 2017

Product backlog refinement, or PBR, is an integral component
of successful Scrums. This process of continuously reviewing
product backlog items, to ensure that teams know exactly what
to work on in the sprints, cannot be done without. It keeps
the teams and the product owner on track. To understand why
PBR is critical, it is necessary to first understand the
details of what PBR is, what we expect from it, and the
strategic value it provides.

What is PBR?
Product backlog refinement is the process in which the product
owner, ScrumMaster, and the development teams review the
product backlog items and define the stories that they will
need to work on during the immediate sprint. Epics or unclear

https://manojkhanna.com/2014/09/23/the-significance-of-product-backlog-refinement-in-scrum-success/
https://manojkhanna.com/2014/09/23/the-significance-of-product-backlog-refinement-in-scrum-success/
https://manojkhanna.com/2014/09/23/the-significance-of-product-backlog-refinement-in-scrum-success/

stories are split apart into smaller stories and are detailed
in this process, while unnecessary backlog items are removed.
In so doing, the backlog items are analyzed in terms of how
much time and work each one will require, and the requirements
for each item are clarified. After the PBR session is
complete, each story should be valuable and testable.

PBR is conducted in each sprint planning meeting to address
the tasks for the immediate sprint. Thus, for each project,
PBR is conducted at least as many times as the number of
sprints. New Scrum teams, or those with sprints of more than
two weeks, may find it useful to conduct more PBR meetings
than the number of sprints in their project; additional
meetings would be conducted outside of the sprint planning
meetings, and these could compose up to ten percent of the
teams’ time. The frequency with which PBR should be conducted
is due to the volatile nature of Scrum product management. The
completion of each sprint reveals more details regarding the
product, which results in the need to alter stories — by
adding or deleting certain aspects of the stories — and
update.

Expectations from PBR
The process of PBR is conducted with the intention of
thoroughly prepping development team members about the
sprint’s tasks, such that the teams know precisely what to
work on and achieve by the end of the sprint. It also is
conducted to assist the PO in getting the top-priority backlog
items ready for the sprint planning meeting. Essentially,
product backlog refinement occurs with the purpose of
clarifying each sprint’s tasks and ensuring that they are in
sizable chunks that can be accomplished.

Each PBR session is intended to provide team members and the
PO with opportunities to update their sprint tasks
accordingly, while additional PBR sessions outside of sprint
planning meetings enable them to work on detailing and

refining a larger number of backlog items.

Vision and strategic value of PBR
Product backlog refinement assists in ensuring progress toward
the project’s objectives. The process succeeds in keeping the
PO and development teams on track toward the project’s main
objectives, as it is a way for the PO, ScrumMaster, and
development teams to maintain a clear vision of the sprint
tasks, especially in light of product feedback, the emergence
of new ideas, and changes in project needs — aspects that can
occur throughout each sprint. Scrum product management
involves constant shaping of the product, which necessitates
redefining the backlog tasks in each sprint. PBR optimizes
such redefining of backlog tasks, thereby preventing the PO
and teams from losing sight of the work to be completed in
each sprint. In so doing, PBR keeps the PO and teams on track
during the project.

Not only does PBR keep the PO and development teams on track
but it also provides strategic value in that conducting PBR
prevents a number of issues from arising later on in the
sprint. A main issue that PBR can help the PO and teams to
avoid is delivery of stories that do not meet the recipient’s
full needs. Without PBR, teams work on stories whose details
are not clarified, leading the teams to complete the stories
unaware of certain requirements. This results in a loss of
time and effort. Another related issue that PBR can make
avoidable is a volatile team velocity that results from
running ambiguous sprints. If a PO and the development teams
choose to forgo PBR, they also risk completing sprints where
the stories they worked on were not the most valuable stories.
Had a PBR meeting been conducted, the more valuable stories
could have been noted and addressed accordingly.

Summary
The value and benefits associated with product backlog
refinement are large, as are the consequences of forgoing the
process. On top of the value it holds, PBR can be easily
integrated into each sprint. Therefore, there is little reason
to pass over this process that is critical to Scrum success.

[This article was originally published on ScrumAlliance.org]

Transforming Agile Nay-Sayers
Into Enthusiasts
written by Manoj Khanna | January 2, 2017

Agile is increasingly mentioned as the go-to method for
product development, and given the coverage on agile, it
appears that there is a consensus that agile is at least
viewed in a neutral light, if not favorably. Despite this,
there are adamant nay-sayers against agile. For those who are
attempting to transition their teams into embracing agile, it
can be difficult if a team member is resistant towards agile.
This post serves to provide insight into the criticism that
some may have towards agile, in order to assist those seeking
to convert agile nay-sayers into enthusiasts. For those who
hold an unfavorable view of agile, this post will detail the
potential of using agile with customer insights to transform

https://www.scrumalliance.org/community/articles/2014/september/the-significance-of-pbr-in-scrum-success
https://manojkhanna.com/2014/09/17/transforming-agile-nay-sayers-into-enthusiasts/
https://manojkhanna.com/2014/09/17/transforming-agile-nay-sayers-into-enthusiasts/

products, along with the top agile practices to adopt in order
to maximize a product’s reception.Main Criticism Against
AgileLack of Structure
A common criticism against agile is the lack of structure,
especially in comparison to traditional methods such as
waterfall. Indeed, agile is more open-ended and it embraces
changes. That is not to be mistaken with chaos, though.
Critics may misinterpret the lack of structure to lead to team
members working on any number of tasks that may be irrelevant,
and that progress cannot be achieved efficiently. Agile, in
its lack of linearity and openness to quick changes, induces
the opposite effect. It enables more progress to be attained
during development, as multiple rounds of testing enable
product features’ issues to emerge quickly and to be addressed
immediately, resulting in a more complete product.

Rushes Into Development

Some may view the multiple cycles involved in agile to be a
“rush” and that it undermines thorough and successful product
development. Agile cycles consist of the stages of more
traditional methods, but less time is spent on each stage
within each sprint. This “rush” into the next stage is
precisely what enables agile product development to
incorporate so much user feedback into the process – and this
incorporation of feedback results in a better product.

“Agile Fever”

Another main criticism against agile is the apparent “agile
fever” that is sweeping across businesses and industries in
the attempt to benefit from this method. This criticism is not
unwarranted, for as is true with anything, too much of a good
thing can be detrimental. With agile, it is important not to
rush into implementing it merely because everyone else appears
to be doing so; it is vital to thoroughly understand agile
before adopting it, and even upon adoption it, the process
should be tailored to each business individually.

Using Agile With Customer Insights to Transform Products

Agile, contrary to the main criticisms that exist, is an
efficient method to transform products into ones that are
well-received by the targeted customers. Each sprint in agile
product development provides the opportunity to glean and
incorporate user feedback into the next sprint. Not only is
user feedback allowed to be a major factor in the product’s
development, but agile also provides ample opportunity for
product issues to emerge and to be addressed on the spot,
before the final product is released. Under agile, the product
is completed multiple times and assessed as such, allowing for
it to be enhanced a number of times more than if another
method were used.

Each sprint in agile product development can be viewed as a
trial run, wherein user assessment is gleaned and addressed
accordingly. Had the product been developed under a method
other than agile, user assessment would not be obtained until
the final product was released – by which time it would be
more costly to fix the issues and to incorporate what users
want and need from the product; the product’s reception and
success would suffer accordingly.

Top Agile Practices to Adopt

To maximize the potential held by agile product development
and customer insights, it is important to emphasize the
adoption of certain agile practices, namely continuous
integration and design review. Continuous integration of
feedback results from, and fuels, constant effort to glean
feedback on and enhance the developing product. This is vital
in creating a more successful final product that matches or
surpasses user expectations. Design review, the other top
agile practice to adopt in order to maximize integration of
customer insights into the final product, enables teams to
review design stories with consideration of the latest product
feedback; it poses the opportunity to plan further work on the

product with the feedback in mind.

There will continue to exist agile nay-sayers who will not
embrace agile, despite the lack of evidence for some of the
main criticisms against agile. For those who are swayed by the
potential held by agile to incorporate user feedback into the
creation of successful products, there exists ample
information for them to begin their agile journey.

{image courtesy: flickr/JD Hancock }

How Measuring Velocity Helps
in Your Agile Journey
written by Manoj Khanna | January 2, 2017

Measuring velocity is a useful way of determining how long an
agile project will take to complete, by providing a rough
estimate of the amount of work the team can complete in a
sprint. It is necessary to keep in mind, however, that as
insightful as knowing your team’s velocity is, velocity is not
a true measure of your product’s development.

This post will discuss what velocity is and the reason why we
measure it, and why management is interested in higher versus
lower velocity.

Velocity Defined

https://www.flickr.com/photos/jdhancock/
https://manojkhanna.com/2014/09/16/how-measuring-velocity-helps-in-your-agile-journey/
https://manojkhanna.com/2014/09/16/how-measuring-velocity-helps-in-your-agile-journey/

Velocity, in terms of agile product management, is a metric
that provides insight into approximately how much work a given
team can complete in a sprint. Measuring velocity uses
information from a completed sprint, so if your team is
approaching its first sprint, you must know how many people
will be involved in the project, the maximum amount of work
each person can complete, and the total number of workdays in
the sprint, in order to calculate the velocity.

Calculating velocity involves units of work that can be
defined as hours or story points – a metric capturing the
complexity of implementing a story – for example, and tasks.
 Velocity is calculated by adding up the difficulty metric of
every backlog task, such as stories, completed by the team in
a given sprint with the units of work for those tasks. This
provides the velocity in terms of units of work per sprint.

Why Measure Velocity?

Velocity provides an estimate of how much work your team,
specifically, can complete in a given sprint. As velocity is
calculated using the work of previous sprints and if
everything remains constant – such as the same people are
involved and the tasks are relatively of the same nature –
then velocity is consistent. If the team had a velocity of 30
story points per sprint for previous software development
projects, then it can be expected that, all else constant, the
team will have a velocity of 30 story points per sprint in the
next software development project.

Velocity is useful in estimating the approximate length that a
project will take, as well. If the project at hand has 120
story points’ worth of stories, and previous sprints show that
the team has a velocity of 30 story points per sprint, then it
can be expected that the team will complete the present
project in four sprints.

Higher Velocity Versus Lower Velocity

As velocity signifies an agile team’s productivity – the
velocity value indicates that either the team completed fewer
high-difficulty stories, or they completed many stories of
lower difficulty – it is more desirable for a team to have a
higher velocity than a lower one. A higher velocity would
indicate that the team is capable of completing more stories
or high-difficulty stories, which translate into more progress
towards the project.

It is worth noting, though, that when teams are measuring
their velocity at the start of a project, the velocity value
will not be as accurate as it will be for later sprints. An
underestimation when initially measuring velocity can result
in a higher velocity later on in the project. Similarly, an
overestimation in initially measuring the velocity will lead
to a lower velocity later on in the project, as the velocity
is adjusted with each completed sprint. As such, the velocity
value that is calculated later on in a project may not
accurately reflect the team’s productivity; their productivity
could have remained constant, yet the change in velocity value
may be due to an under or overestimation.

Velocity Is Not a True Measure of Product Development

As useful as measuring velocity is, an agile team should not
rely on their velocity to indicate the progress of their
product’s development. The velocity is measured based on each
sprint, and with each new sprint, new product features’
information is accumulated and added; this changes the stories
and story points associated with the next sprint, so the
previous sprint’s velocity is not necessarily indicative of
the team’s work in the next sprint. Many new features may
have to be added or changed in the next sprint, so the nearly
completed product of the previous sprint may actually be 40%
completed, given the previous sprint’s feedback. Even though
the team had a high velocity in the previous sprint, product
feedback necessitated even more work before the product can be
deemed complete.

{Photo courtesy: Flickr/Jan-Hendrik Palic}

Reasons Why Agile Coaches
Must Get Their Hands Dirty
written by Manoj Khanna | January 2, 2017

Agile coaches must be involved in the client’s Agile process.
Those who have the impression that coaching can be done from
the sidelines are mistaken, for coaches must get their hands
dirty if they want to bring about successful Agile adoption.

To better explain why Agile coaches cannot be observers, I
will provide details about the possible mayhem within the
Agile landscape, some twisted thoughts about coaching, and the
high-level transition plans that Agile coaches should set in
motion for their clients.

Mayhem within the Agile landscape
The landscape is rampant with companies trying to transition
their teams to Agile while not implementing the method fully.
Companies transitioning from a traditional method to Agile
face obstacles in the process. Company leaders must fully
understand Agile. On top of that, they then must convey the

https://manojkhanna.com/2014/09/08/reasons-why-agile-coaches-must-get-their-hands-dirty/
https://manojkhanna.com/2014/09/08/reasons-why-agile-coaches-must-get-their-hands-dirty/

information to their teams and get everyone to coordinate.
During the Agile transition, they may encounter issues such as
working on too many projects at once, improperly allocating
resources, and not forming truly cohesive teams. In certain
companies, such transitions are major ones — a situation that
increases the difficulty of transitioning to Agile.

These obstacles are such that the move toward Agile likely
will not be smooth and successful the first time around.
Without Agile coaches to guide them, companies will fumble
through trial-and-error projects numerous times before they
attain full Agile implementation. Their Agile adoption process
will require more time than if they had the assistance of an
Agile coach.

Twisted thoughts about Agile coaching
Not any Agile coach will do, however. Companies who decide to
enlist the assistance of a coach need help in laying a solid
Agile foundation and smoothing their adoption process. In
order to provide such assistance, Agile coaches must immerse
themselves in the process as if they were part of the company.

Too many Agile coaches, however, are under the impression that
coaching consists merely of teaching the company leaders the
Agile components. They teach Agile instead of walking the
companies through the process as coaches. Few deem it
necessary to observe the leaders and teams or to provide
insight into what is properly implemented and what needs to be
done better. Yet Agile coaches cannot be sideline observers of
their clients, because Agile implementation does not come with
a guidebook. Each company will have a unique implementation
process based on individual dynamics, and coaches need to
understand each company and tailor their coaching
appropriately.

The Agile coach’s necessary involvement
Agile coaches must coach hands-on. Companies know their
transition to Agile would take significant time for them to
sort through on their own, and often they want to thoroughly
adopt Agile more quickly. Such companies enlist Agile coaches
for their seasoned insight and experience, which coaches can
provide if they work properly within the company.

Coaches who stand on the sidelines, give advice on the Agile
method, and then leave quickly do not assist much toward a
successful transition to Agile. They need to remember the
reason why the companies sought them out in the first place —
to guide them through the Agile implementation and provide
pointers along the way. Agile coaches need to understand the
companies that they work with, provide insight into how Agile
can fit into each company individually, and guide each company
through the transition.

Agile coaches can become involved at any stage of the
transition process. It depends when a client has deemed it
necessary to enlist a coach’s assistance. Ideally, a company
would enlist an Agile coach from the beginning to reduce
delay.

Transition plan
Agile transition is not a one-size-fits-all proposition; there
is not one structured set of rules for the process. To assist
companies in attaining the expected outcome of a quick, smooth
Agile adoption, coaches should have transition plans tailored
to each company. However, coaches can approach this in a
general order, by first identifying and addessing the
company’s particular issues. For instance, if a company’s team
members do not work cohesively, then the coach should guide
the leaders to focus on removing the impediments to good
teamwork. Coaches must help pinpoint and address issues
impeding Agile implementation.

This entails providing on-the-ground assistance in
coordinating teams throughout the company to understand and
use Agile, defining each company’s process, aligning the
entire organization with Agile, and guiding the company to see
issues and solutions more quickly.

Summary
The key is that Agile coaches need to be part of their
clients’ Agile process. When coaches see themselves giving
advice without taking time to observe the client’s teams on
multiple occasions, that is when they cease to be Agile
coaches.

{Note: This article was originally published on Scrum
Alliance. Image courtesy: Flickr/Bikolabs}

How to select an Agile tool
that works for you and your
team
written by Manoj Khanna | January 2, 2017

The agile approach to project management entails constant

https://www.scrumalliance.org/community/articles/2014/september/reasons-why-agile-coaches-must-get-their-hands-dir
https://www.scrumalliance.org/community/articles/2014/september/reasons-why-agile-coaches-must-get-their-hands-dir
https://www.flickr.com/photos/bikolabs/
https://manojkhanna.com/2014/08/07/how-to-select-an-agile-tool-that-works-for-you-and-your-team/
https://manojkhanna.com/2014/08/07/how-to-select-an-agile-tool-that-works-for-you-and-your-team/
https://manojkhanna.com/2014/08/07/how-to-select-an-agile-tool-that-works-for-you-and-your-team/

changes which require a set of tools that are not only
resilient to the various changes that will emerge in the
development process, but which also suit how your team works.
 The ideal tool for each organization will be different, but
in any case, it will facilitate agile work processes and allow
for team structures to be adapted for maximum project results.

Read more here.

{image courtesy: Flickr/Dushan}

http://sntio.com/agile/how-to-select-a-tool-that-works-for-you/

