
SKILLS. TALENT. $OURCE.
OUT$OURCE.
written by Manoj Khanna | February 3, 2003
The traditional definition of outsourcing describes using
external agents to perform one or more organizational
activities – purchasing of goods or services. Mostly in our IT
segment we see outsourcing as contract programmers to third
party facilities. And now there is something else too
associated with it. And what’s that?

The usual way of outsourcing are getting very common practices
with every company. The unusual ways are trending in. The
global village is here. In my business I’m only six-tenths of
a second (speed of light measurement) away from the other
business person around the globe. If I need to partner with
somebody in IT – I can always easily look into
Bangalore/Hyderbad, India or Belarus, Russia, and Vancouver,
Canada.

According to Economist, “Any activity that relies on a screen
or a telephone can be carried out anywhere in world.” A-N-Y-W-
H-E-R-E-I-N-T-H-E-W-O-R-L-D! Thus making services such as
insurance processing, customer care solutions, banking-
services, home-security, health-care delivery, accounts-
management as exportable as automobiles or TVs or VCRs. Major
airlines have their back-office works transferred to countries
like India, and Phillipines. Even systems like EMS in
Australia are controlled and monitored remotely in offices
like, Singapore, Malaysia, Sri Lanka, Indonesia, and Taiwan.

So what’s the age of outsourcing in which we are living in?
But in the first place the question arises “W-H-Y-O-U-T-S-O-U-
R-C-E?” Its a competitive world. And in a competiting market
in order to $ave those extra bill$ is as equally important as
to sustain yourself in the business. Why pay for a service
$100 when you can get it done for $30 or less. So that’s why
O-U-T-$-O-U-R-C-E!!

https://manojkhanna.com/2003/02/03/skills-talent-ource-outource/
https://manojkhanna.com/2003/02/03/skills-talent-ource-outource/

Wages in the United States, Germany, Switzerland, United
Kingdom, Japan are…ludicrously higher than the rest of the
world. We like high wages and high ranking on any competitive
table. And if we would like to continue this position or stay
near the top, then we must work on the next act.

Its a revolution in cognitive processing. We all are in
technology business, from travel-services-organizations, to
twelve-table-restaurants, to financial-services, the list
goes-on. Downsizing is not the solution. Finding new ways to
enhance revenues – n-e-w-p-r-o-d-u-c-t-a-n-d-i-n-n-o-v-a-t-i-
o-n is the key for the $ucce$$ gate!

And I would like to conclude with James Morse saying, “The
only sustainable competitive advantage…comes out-innovating
the competition.”

Think revolution, not evolution.
© Manoj Khanna/Open Source World/rapidblog.com 2003, 2004,
2005, 2006, 2007, 2008, 2009
Powered by Dextrus Prosoft, Inc.

SKILLS. TALENT. $OURCE.
OUT$OURCE.
written by Manoj Khanna | February 3, 2003
The traditional definition of outsourcing describes using
external agents to perform one or more organizational
activities – purchasing of goods or services. Mostly in our IT
segment we see outsourcing as contract programmers to third
party facilities. And now there is something else too
associated with it. And what’s that?

The usual way of outsourcing are getting very common practices
with every company. The unusual ways are trending in. The
global village is here. In my business I’m only six-tenths of

http://www.dextrusprosoft.com
https://manojkhanna.com/2003/02/03/skills-talent-ource-outource-2/
https://manojkhanna.com/2003/02/03/skills-talent-ource-outource-2/

a second (speed of light measurement) away from the other
business person around the globe. If I need to partner with
somebody in IT – I can always easily look into
Bangalore/Hyderbad, India or Belarus, Russia, and Vancouver,
Canada.

According to Economist, “Any activity that relies on a screen
or a telephone can be carried out anywhere in world.” A-N-Y-W-
H-E-R-E-I-N-T-H-E-W-O-R-L-D! Thus making services such as
insurance processing, customer care solutions, banking-
services, home-security, health-care delivery, accounts-
management as exportable as automobiles or TVs or VCRs. Major
airlines have their back-office works transferred to countries
like India, and Phillipines. Even systems like EMS in
Australia are controlled and monitored remotely in offices
like, Singapore, Malaysia, Sri Lanka, Indonesia, and Taiwan.

So what’s the age of outsourcing in which we are living in?
But in the first place the question arises “W-H-Y-O-U-T-S-O-U-
R-C-E?” Its a competitive world. And in a competiting market
in order to $ave those extra bill$ is as equally important as
to sustain yourself in the business. Why pay for a service
$100 when you can get it done for $30 or less. So that’s why
O-U-T-$-O-U-R-C-E!!

Wages in the United States, Germany, Switzerland, United
Kingdom, Japan are…ludicrously higher than the rest of the
world. We like high wages and high ranking on any competitive
table. And if we would like to continue this position or stay
near the top, then we must work on the next act.

Its a revolution in cognitive processing. We all are in
technology business, from travel-services-organizations, to
twelve-table-restaurants, to financial-services, the list
goes-on. Downsizing is not the solution. Finding new ways to
enhance revenues – n-e-w-p-r-o-d-u-c-t-a-n-d-i-n-n-o-v-a-t-i-
o-n is the key for the $ucce$$ gate!

And I would like to conclude with James Morse saying, “The
only sustainable competitive advantage…comes out-innovating
the competition.”

Think revolution, not evolution.

© Manoj Khanna 2003 – 2012.

.NET. WINDOWS. J2EE. LINUX.
UNIX/MAC. THE WAR.
written by Manoj Khanna | February 3, 2003
.NET stands up against J2EE

Windows cheaper than Linux

Arguments supporting both platforms

Regardless of which platform you pick, new developers
will need to be

trained (Java training for J2EE, OO training for .NET)

You can build web services today using both platforms

Both platforms offer a low system cost, such as
jBoss/Linux/Cobalt for

J2EE, or Windows/Win32 hardware for .NET.

Both platforms offer a single-vendor solution.

The scalability of both solutions are theoretically
unlimited.

https://manojkhanna.com/2003/02/03/net-windows-j2ee-linux-unixmac-the-war/
https://manojkhanna.com/2003/02/03/net-windows-j2ee-linux-unixmac-the-war/
http://www.objectwatch.com/issue_42.htm
http://news.com.com/2100-1001-975938.html?tag=cd_mh

Arguments for .NET and against J2EE

.NET has Microsoft’s A-team marketing it

.NET released their web services story before J2EE did,
and thus has

some mind-share

.NET has a better story for shared context today than
J2EE

.NET has an awesome tool story with Visual Studio.NET

.NET has a simpler programming model, enabling rank-and-
file

developers to be productive without shooting themselves
in the foot

.NET gives you language neutrality when developing new
eBusiness

applications, whereas J2EE makes you treat other
languages as separate

applications

.NET benefits from being strongly interweaved with the
underlying

operating system

Arguments for J2EE and against .NET

J2EE is being marketed by an entire industry

J2EE is a proven platform, with a few new web services
APIs. .NET is a

rewrite and introduces risk as with any first-generation
technology

Only J2EE lets you deploy web services today

Existing J2EE code will translate into a J2EE web
services system

without major rewrites. Not true for Windows DNA code
ported to .NET.

.NET web services are not interoperable with current
industry

standards. Their BizTalk framework has proprietary SOAP
extensions and does

not support ebXML.

J2EE is a more advanced programming model, appropriate
for

well-trained developers who want to build more advanced
object models and

take advantage of performance features

J2EE lets you take advantage of existing hardware you
may have

J2EE gives you platform neutrality, including Windows.
You also get

good (but not free) portability. This isolates you from
heterogeneous

deployment environments.

J2EE has a better legacy integration story through the
Java Connector

Architecture (JCA)

J2EE lets you use any operating system you prefer, such
as Windows,

UNIX, or mainframe. Developers can use the environment
they are most

productive in.

J2EE lets you use Java, which is better than C# due to
market-share

and maturity. According to Gartner, there are 2.5
million Java developers.

IDC predicts this will grow to 4 million by 2003. 78%
universities teach

Java, and 50% of universities require Java.

We would not want to use any language other than C# or
Java for

development of new mission-critical solutions, such as a
hacked

object-oriented version of C, VB, or COBOL.

We are finding most ISVs and consulting companies going
with J2EE

because they cannot control their customers’ target
platforms. We believe

this application availability will result in J2EE
beginning to dominate more

and more as time goes on.

In conclusion, while both platforms will have their own
market-share, we

feel most customers will reap greater wins with J2EE. We feel
the advantages

outweigh those offered by Microsoft.NET. That is our preferred
architecture,

and we stand behind it.

As we know the field is the real test and these head to head
comparisons

will be more believable by the end of 2003 when the real cost
of people and

maintenance and interoperability and up time and down time.
© Manoj Khanna/Open Source World/rapidblog.com 2003, 2004,
2005, 2006, 2007, 2008, 2009
Powered by Dextrus Prosoft, Inc.

Ready. FIRE! Aim.
written by Manoj Khanna | February 3, 2003
The biggest problem faced by business today is not learning
but forgetting. And as Tom Peter quotes “Forgetting is the key

http://www.dextrusprosoft.com
https://manojkhanna.com/2003/02/01/ready-fire-aim-2/

activity…the primary activity…these days.” Forget it!

“You can’t live without an eraser”. (Gregory Bateson,
Cybernetics)

Ready. Fire. Aim. Or: Just do it. We forget…and then we try to
reinvent the wheel. But where we’ll be going then. Some of the
most innovative successes came from forgetting…the past…and
then venturing into N-E-W! But how to i-n-n-o-v-a-t-e? Forget
the details. Rapid prototyping is the core competency among
the innovation’s winners. “Effective prototyping may be the
most valueable ‘core competence’ an innovative organization
can hope to have.” (Michael Scharge, author and tech maven)

What’s then Rapid prototyping? It’s N-O-T off-the-shelf
technique. Its cultural. Thus needless to say the-way-we-do-
business-around-here is basically driven by quick-and-dirty
tests and experiments. The normal practices are free flowing
exchange around the rough models.

So how can I (MK), you or anybody can implement such a
culture? The process is subtle, but with all due surprises its
the way of life that makes an impact on the innovation
potential. Think about the text book – think about chemistry
as a subject you learned while in school. The-prototypers-
breed.

© Manoj Khanna 2003 – 2012.

Ready. FIRE! Aim.
written by Manoj Khanna | February 3, 2003
The biggest problem faced by business today is not learning
but forgetting. And as Tom Peter quotes “Forgetting is the key
activity…the primary activity…these days.” Forget it!

https://manojkhanna.com/2003/02/01/ready-fire-aim/

“You can’t live without an eraser”. (Gregory Bateson,
Cybernetics)

Ready. Fire. Aim. Or: Just do it. We forget…and then we try to
reinvent the wheel. But where we’ll be going then. Some of the
most innovative successes came from forgetting…the past…and
then venturing into N-E-W! But how to i-n-n-o-v-a-t-e? Forget
the details. Rapid prototyping is the core competency among
the innovation’s winners. “Effective prototyping may be the
most valueable ‘core competence’ an innovative organization
can hope to have.” (Michael Scharge, author and tech maven)

What’s then Rapid prototyping? It’s N-O-T off-the-shelf
technique. Its cultural. Thus needless to say the-way-we-do-
business-around-here is basically driven by quick-and-dirty
tests and experiments. The normal practices are free flowing
exchange around the rough models.

So how can I (MK), you or anybody can implement such a
culture? The process is subtle, but with all due surprises its
the way of life that makes an impact on the innovation
potential. Think about the text book – think about chemistry
as a subject you learned while in school. The-prototypers-
breed.

© Manoj Khanna/Open Source World/rapidblog.com 2003, 2004,
2005, 2006, 2007, 2008, 2009
Powered by Dextrus Prosoft, Inc.

RAPID. FORWARD. FAST. VISION.
MANAGEMENT.
written by Manoj Khanna | February 3, 2003
There is a great deal of progress in the past two decades in
Software Development Management, in terms of improving
software quality, development productivity and overall

http://www.dextrusprosoft.com
https://manojkhanna.com/2003/02/01/rapid-forward-fast-vision-management-2/
https://manojkhanna.com/2003/02/01/rapid-forward-fast-vision-management-2/

development process. The progress over the last two decades
specified what to do with the programs like Sourcecode
Configuration Management (ClearCase, CVS, etc.) and Defect
Tracking System. On the other hand, the techniques learned are
impossible to put into a program.

“VISIBILITY” is the most important element of project, and so
is its “ABILITY TO CHANGE DIRECTIONS”. A highly visible
project tells it’s leader where it is at all times.

In a “VISIBLE” scenario, the project instruments everything
with tests. Not regressing the bench version, and making every
feature available in bench version a deliverable. Thus making
the status of the project always visible.

To be visible, a project must write Programmer Tests
(sometimes called Unit Tests). Done right, they reduce the
odds of defects to so low that the few bugs you actually get
will simply go into your requirements tracking system.

For direction changes the project must have a configuration
tool (tools such as CVS, ClearCase, etc.) and the prescence of
copius tests. This enables the leader to request features in
the most important order, and any feature which is not
requested cause no waste code and eventually no waste of work.

Thus this signifies all the tests that ensure visibility also
permit steering. Tests will tell you what’s done and what
isn’t.

In other cases, when there is no code produced then a record
of document reviews is a good indicator of project status.
Also its important to track what’s going on with change
requests and defect reports coming into the project. A

good risk register is also important.

A good quality system can go a long way to improve the
development process, though it is up to you to perform the

implementation. There are several documents which define a
quality system. Two of those which are well-known are:

– IEEE Standard 1298

– ISO Standards 9001:1994 and 9000-3:1997 (or the later
versions).

There isn’t any “canned” software development system that
works across all types of software development projects. In
fact, some software gurus adhere to a “contingent” approach to
software development. Why? Because there are a broad variety
of types of software development projects, there is, thus, a
need to use a broad variety of software development
approaches, depending on the type of project involved.

© Manoj Khanna 2003 – 2012.

RAPID. FORWARD. FAST. VISION.
MANAGEMENT.
written by Manoj Khanna | February 3, 2003
There is a great deal of progress in the past two decades in
Software Development Management, in terms of improving
software quality, development productivity and overall
development process. The progress over the last two decades
specified what to do with the programs like Sourcecode
Configuration Management (ClearCase, CVS, etc.) and Defect
Tracking System. On the other hand, the techniques learned are
impossible to put into a program.

“VISIBILITY” is the most important element of project, and so
is its “ABILITY TO CHANGE DIRECTIONS”. A highly visible
project tells it’s leader where it is at all times.

https://manojkhanna.com/2003/01/31/rapid-forward-fast-vision-management/
https://manojkhanna.com/2003/01/31/rapid-forward-fast-vision-management/

In a “VISIBLE” scenario, the project instruments everything
with tests. Not regressing the bench version, and making every
feature available in bench version a deliverable. Thus making
the status of the project always visible.

To be visible, a project must write Programmer Tests
(sometimes called Unit Tests). Done right, they reduce the
odds of defects to so low that the few bugs you actually get
will simply go into your requirements tracking system.

For direction changes the project must have a configuration
tool (tools such as CVS, ClearCase, etc.) and the prescence of
copius tests. This enables the leader to request features in
the most important order, and any feature which is not
requested cause no waste code and eventually no waste of work.

Thus this signifies all the tests that ensure visibility also
permit steering. Tests will tell you what’s done and what
isn’t.

In other cases, when there is no code produced then a record
of document reviews is a good indicator of project status.
Also its important to track what’s going on with change
requests and defect reports coming into the project. A

good risk register is also important.

A good quality system can go a long way to improve the
development process, though it is up to you to perform the
implementation. There are several documents which define a
quality system. Two of those which are well-known are:

– IEEE Standard 1298

– ISO Standards 9001:1994 and 9000-3:1997 (or the later
versions).

There isn’t any “canned” software development system that
works across all types of software development projects. In
fact, some software gurus adhere to a “contingent” approach to
software development. Why? Because there are a broad variety
of types of software development projects, there is, thus, a

need to use a broad variety of software development
approaches, depending on the type of project involved.

© Manoj Khanna/Open Source World/rapidblog.com 2003, 2004,
2005, 2006, 2007, 2008, 2009
Powered by Dextrus Prosoft, Inc.

http://www.dextrusprosoft.com

